skip to main content


Search for: All records

Creators/Authors contains: "Stevens, C. Max"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Greenland Ice Sheet surface elevation is changing as mass loss accelerates. In understanding elevation change, the magnitudes of physical processes involved are important for interpretation of altimetry and assessing changes in these processes. The four key processes are surface mass balance (SMB), firn densification, ice dynamics, and isostatic adjustment. We quantified these processes at Summit, Greenland, where monthly Global Navigation Satellite System (GNSS) snowmobile traverses measured elevation change from 2008 to 2018. We find an elevation increase of 0.019 m a−1. The sum of the effects of the four processes reproduces the measured elevation time series, in linear trend and in intra‐annual variability. The short‐term variability in elevation is primarily explained by the variability in SMB. Since SMB has not changed significantly over the last century, and the other processes change over longer time scales, the elevation change likely has been ongoing for at least the last 100 years.

     
    more » « less
  2. Abstract

    Data from the South Pole ice core (SPC14) are used to constrain climate conditions and ice‐flow‐induced layer thinning for the last 54,000 years. Empirical constraints are obtained from the SPC14 ice and gas timescales, used to calculate annual‐layer thickness and the gas‐ice age difference (Δage), and from high‐resolution measurements of water isotopes, used to calculate the water‐isotope diffusion length. Both Δage and diffusion length depend on firn properties and therefore contain information about past temperature and snow‐accumulation rate. A statistical inverse approach is used to obtain an ensemble of reconstructions of temperature, accumulation‐rate, and thinning of annual layers in the ice sheet at the SPC14 site. The traditional water‐isotope/temperature relationship is not used as a constraint; the results therefore provide an independent calibration of that relationship. The temperature reconstruction yields a glacial‐interglacial temperature change of 6.7 ± 1.0°C at the South Pole. The sensitivity ofδ18O to temperature is 0.99 ± 0.03 ‰°C−1, significantly greater than the spatial slope of 0.8‰°C−1that has been used previously to determine temperature changes from East Antarctic ice core records. The reconstructions of accumulation rate and ice thinning show millennial‐scale variations in the thinning function as well as decreased thinning at depth compared to the results of a 1‐D ice flow model, suggesting influence of bedrock topography on ice flow.

     
    more » « less